Coupling coefficients of $S O(n)$ and integrals involving Jacobi and Gegenbauer polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys. A: Math. Gen. 371093
(http://iopscience.iop.org/0305-4470/37/3/036)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.91
The article was downloaded on 02/06/2010 at 18:27

Please note that terms and conditions apply.

ADDENDUM

Coupling coefficients of $S O(n)$ and integrals involving Jacobi and Gegenbauer polynomials

Sigitas Ališauskas
Institute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 12, Vilnius 2600, Lithuania

Received 5 September 2003
Published 7 January 2004
Online at stacks.iop.org/JPhysA/37/1093 (DOI: 10.1088/0305-4470/37/3/036)

Abstract

A new and short proof of expression (3.2e) of Ališauskas (2002 J. Phys. A: Math. Gen. 35 7323) with obvious triangle conditions for integrals of the Jacobi polynomials is proposed, without any allusion to the special isofactors of $S p(4)$. Expressions (3.6c) and (3.12) are corrected.

PACS number: 02.20.Q

Recently in section 3 of [1], the integrals involving triplets of the Gegenbauer and the Jacobi polynomials and corresponding to special coupling coefficients of $S O(n)$ have been rearranged, using their relation with the semistretched isofactors of the second kind for the complementary chain $S p(4) \supset S U(2) \times S U(2)$.

In contrast to the possible proof of identities (3.2c)-(3.2e) of [1] by a direct but not obvious transformation procedure discussed in the concluding remarks (section 7) of [1], expression (3.2d) of [1] for the integrals involving the product of three Jacobi polynomials may be rearranged straightforwardly, without any allusion to the special isofactors of $S p(4)$. For this purpose we apply the symmetry relation (3.2a)-(3.2b) of [1] (i.e. interchange α_{a} and $\left.\beta_{a}, a=0,1,2,3\right)$ to $(3.2 d)$. When α_{0} and β_{0} are integers, the ${ }_{3} F_{2}(1)$ type sums over z_{i} in the (modified) expressions (3.2d) and (3.2e) of [1] correspond to the Clebsch-Gordan coefficients of $S U(2)$ with the equivalent Regge 3×3 symbols

$$
\left\|\begin{array}{|ccc}
k_{i} & k_{i}+\alpha_{i}+\beta_{i} & p_{i}^{\prime}-z_{j}-z_{k} \tag{1}\\
p_{i}^{\prime}+\beta_{i}+k_{j}+k_{k}-z_{j}-z_{k} & p_{i}^{\prime \prime} & k_{i}+\alpha_{i} \\
p_{i}^{\prime \prime}+\alpha_{i} & p_{i}^{\prime}+k_{j}+k_{k}-z_{j}-z_{k} & k_{i}+\beta_{i}
\end{array}\right\|
$$

and

$$
\| \begin{array}{ccc}
p_{i}-z_{j}-z_{k} & k_{i} & k_{i}+\alpha_{i}+\beta_{i} \tag{2}\\
k_{i}+\beta_{i} & p_{i}^{\prime \prime}+\alpha_{i} & p_{i}^{\prime}+k_{j}+k_{k}-z_{j}-z_{k} \\
k_{i}+\alpha_{i} & p_{i}^{\prime}+\beta_{i}+k_{j}+k_{k}-z_{j}-z_{k} & p_{3}^{\prime \prime}
\end{array}
$$

expressed in both cases by means of (15.1c) of Jucys and Bandzaitis [2] (see also (7) of section 8.2 of [3]), but with hidden triangular conditions in the first case. For possible noninteger values of α_{0} and/or β_{0}, the doubts as to the equivalence of these finite ${ }_{3} F_{2}(1)$ series may be caused by the absence of mutually coinciding integer parameters (k_{i} in the modified expression (3.2d) and $\min \left(p_{i}-z_{j}-z_{k}, p_{i}^{\prime \prime}\right)$ as triangular conditions in (3.2e), respectively) restricting summation over z_{i}, unless equation (15.1d) of [2] (together with possible inversion of summation) is used for the CG coefficient of $S U(2)$ with Regge symbol (2). Note that the proof of relation between the corresponding finite ${ }_{3} F_{2}(1)$ series in ($3.2 d$) and (3.2e) based on the composition of Thomae's transformation formulae or their Whipple's specifications for single restricting parameter (see $[4,5]$) is rather complicated.

The denominator factor $\left(l_{i}^{\prime}+n / 2\right)_{z_{i}}$ in (3.6c) of [1] should be corrected to $\left(l_{i}+n / 2\right)_{z_{i}}$, and the denominator factor $\left(\alpha_{i}+3 / 2\right)_{z_{i}}$ in (3.12) of [1] should be corrected to $\left(\alpha_{i}+k_{i}+3 / 2\right)_{z_{i}}$. The factor $C_{l_{i}-l^{\prime}}^{l^{\prime}+n / 2-1}(\cos \theta)$ in (3.8a) of [1] should be replaced (twice) by $C_{l_{1}-l^{\prime}}^{l^{\prime}+n / 2-1}(\cos \theta)$.

References

[1] Ališauskas S 2002 J. Phys. A: Math. Gen. 357323
[2] Jucys A P and Bandzaitis A A 1977 Theory of Angular Momentum in Quantum Mechanics 2nd edn (Vilnius: Mokslas) (in Russian)
[3] Varshalovich D A, Moskalev A N and Khersonskii V K 1988 Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols (Singapore: World Scientific)
[4] Slater L J 1966 Generalized Hypergeometric Series (Cambridge: Cambridge University Press)
[5] Srinavasa Rao K, Van der Jeugt J, Raynal J, Jagannathan R and Rajeswari V 1992 J. Phys. A: Math. Gen. 25861

